Answer:
1055.04 cm³
Explanation:
Since, when the cone is placed inside the cylinder,
Then, the volume of the air space surrounding the cone inside the cylinder = Volume of the cylinder - Volume of the cone.
Since, the volume of a cylinder is,
![V=\pi r^2h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2x6jh6ysz6ef85wkmp7armtq6fmfcdu3bh.png)
Where, r is the radius and h is the height,
Here, h = 16 cm, r = 5 cm,
So, the volume of the cylinder is,
![V_1=\pi (5)^2 (16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/loh5li6lcxt9tgyueo6huwgalu44xz6urh.png)
![=3.14* 25* 16](https://img.qammunity.org/2020/formulas/mathematics/high-school/nt6v4udy37uh4t6se5i4gfsicsar0tn73u.png)
![=1256\text{ cubic cm}](https://img.qammunity.org/2020/formulas/mathematics/high-school/yjb8pr7wqhgr0akh5lsx7zl1wdvyjyzdec.png)
Now, the volume of a cone is,
![V=(1)/(3)\pi (R)^2 H](https://img.qammunity.org/2020/formulas/mathematics/high-school/8q1v8o8cs1tggaqn0s3l7b4ut0un78qilv.png)
Where, R is the radius and H is the height,
Here, R = 4 cm and H = 12 cm,
So, the volume of the cone is,
![V_2=(1)/(3)\pi (4)^2 (12)](https://img.qammunity.org/2020/formulas/mathematics/high-school/q39vivjq29cwc21ae1gef9ok4vzq5sccu0.png)
![=(1)/(3)* 3.14* 16* 12](https://img.qammunity.org/2020/formulas/mathematics/high-school/dw8twx0d18txc5qytyzktjyx6tncp71nsc.png)
![=200.96\text{ cubic cm}](https://img.qammunity.org/2020/formulas/mathematics/high-school/8xwf29tnwyx9cims6sdnar329t8sjjmq1u.png)
Hence, the volume of the air space surrounding the cone inside the cylinder is,
![V_1-V_2=1256-200.96=1055.04\text{ cubic cm}](https://img.qammunity.org/2020/formulas/mathematics/high-school/9vywkb90lw3t0tqr8925jgr9muci1r90is.png)