191k views
3 votes
Verify this identity starting from the left

Verify this identity starting from the left-example-1

1 Answer

4 votes

Answer:

see explanation

Explanation:

Using the trigonometric identities

• sin²x + cos²x = 1

• cot x =
(cosx)/(sinx), csc x =
(1)/(sinx)

Consider the left side


(1+cosx)/(1-cosx) -
(1-cosx)/(1+cosx)

Expressing as a single fraction

=
((1+cosx)^2-(1-cosx)^2)/((1-cosx)(1+cosx))

Expand and simplify numerator/ denominator

=
(1+2cosx+cos^2x-1+2cosx-cos^2x)/(1-cos^2x)

=
(4cosx)/(sin^2x)

=
(4cosx)/(sinx) ×
(1)/(sinx)

= 4cotxcscx = right side ⇒ verified

User Ritz
by
8.7k points