143k views
4 votes
Find the value of x.

Round to the nearest tenth.
100°
25
30
х
x = [?]
Law of Cosines : c2 = a + b2 - 2ab cos C

Find the value of x. Round to the nearest tenth. 100° 25 30 х x = [?] Law of Cosines-example-1
User BZKN
by
5.7k points

1 Answer

9 votes

Answer:

x ≈ 42.3

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Equality Properties

Pre-Calculus

  • Law of Cosines: c² = a² + b² - 2(a)(b)cosC°

Explanation:

Step 1: Identify

Leg a = 25

Leg b = 30

C = 100°

Leg c = x

Step 2: Solve for x

  1. Substitute [LOC]: x² = 25² + 30² - 2(25)(30)cos100°
  2. Exponents: x² = 625 + 900 - 2(25)(30)cos100°
  3. Multiply: x² = 625 + 900 - 1500cos100°
  4. Evaluate: x² = 625 + 900 - 1500(-0.173648)
  5. Multiply: x² = 625 + 900 + 260.472
  6. Add: x² = 1525 + 260.472
  7. Add: x² = 1785.47
  8. Isolate x: x = 42.2548
  9. Round: x ≈ 42.3
User Melchiar
by
5.0k points