Answer:
![r=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b29yb0ge9fvi4wun5atcr4w516dh1ucdje.png)
Explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
![y=kx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ho37lptiefci31wskjnke7d88izbug72ti.png)
In this problem
Let
![y=m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mod7dmbyli44sy8ghf3qdppcjwba75n7z0.png)
![x=r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9zy7j2hek6j5w0uxrx7ol1rlh740dkd2xu.png)
substitute
![m=kr^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ym5jaudckvptcuwn9p9eiwqaw15v1sa2mr.png)
Find the value of k
For
![r=2, m=14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f29mkjg7yvzbenibwrmoxmqxzcaiv82f71.png)
![14=k(2^(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/790bemyk5rwty8aeonzt94xmxju3imgzx4.png)
![14=4k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qw2dtlazl0i5fgzc18k0stwl2l8ctcvefa.png)
----> constant of proportionality
the equation is equal to
![m=(14/4)r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aehfxj1a7fib4lx54ry8lmdvqn2crqbmmr.png)
Find the value of r when m=224
substitute in the equation and solve for r
![224=(14/4)r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xu9myewg9s2tw6pzbqs2c5073jx9jpdhhe.png)
![r^(2)=224*4/14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7i4aj98gqpioj5hcv3otsctaeehi6jxj9c.png)
![r^(2)=64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g14pl216hcvlsbwombs0mx9ovpeahyff5u.png)
![r=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b29yb0ge9fvi4wun5atcr4w516dh1ucdje.png)