Answer:
Option D.
![<R=62\°](https://img.qammunity.org/2020/formulas/mathematics/high-school/11cgah0iuxmsapsufc2p9q7dkqelmc7my5.png)
Explanation:
step 1
Find the measure of angle F
we know that
In an inscribed quadrilateral, the opposite angles are supplementary
so
![<Q+<F=180\°](https://img.qammunity.org/2020/formulas/mathematics/high-school/7l2y1ndvgfh8geybjpl227f15f5u2qqz2r.png)
substitute the value of <Q
![99\°+<F=180\°](https://img.qammunity.org/2020/formulas/mathematics/high-school/7axd5uf83wjm4er78ok1ig1jf9vao8wx7z.png)
![<F=180\°-99\°=81\°](https://img.qammunity.org/2020/formulas/mathematics/high-school/3vog4zi54rhpo5l5qid4ek1iep9zap64us.png)
step 2
Find the measure of arc PQ
we know that
The inscribed angle measures half that of the arc comprising
so
![<F=(1)/(2)(arc\ PQ+arc\ RQ)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8j4lp5zyx3v68drob3o8oq4039b801sxk7.png)
substitute values
![81\°=(1)/(2)(arc\ PQ+92\°)](https://img.qammunity.org/2020/formulas/mathematics/high-school/z3w8t3c2dgct6s9t87nv71xmi6hntl9mig.png)
![162\°=(arc\ PQ+92\°)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tjxuuutt7emioydejunvniywqd20aa0vh0.png)
![arc\ PQ=162\°-92\°=70\°](https://img.qammunity.org/2020/formulas/mathematics/high-school/iumg9jtd8st0mqcibkbwa0syuuivvjbjfi.png)
step 3
Find the measure of angle R
we know that
The inscribed angle measures half that of the arc comprising
so
![<R=(1)/(2)(arc\ FP+arc\ PQ)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1h0l0k7wirc9hron4kmrcpxkb94r8cd1ja.png)
substitute values
![<R=(1)/(2)(54\°+70\°)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2fc85h8nzxob3ibxjeya7xpfkxbrrfty87.png)
![<R=(1)/(2)(124\°)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tyth1d127zkce89s3wusdq2fcqsnm7vffz.png)
![<R=62\°](https://img.qammunity.org/2020/formulas/mathematics/high-school/11cgah0iuxmsapsufc2p9q7dkqelmc7my5.png)