92.5k views
5 votes
Simplify the expression using sum or difference identities cos(12)cos(-3)-sin(12)sin(-3)​

User JohnnieL
by
8.8k points

2 Answers

3 votes

Answer:

when you simplify the answer is -0.91113026

Explanation:

User Emeeery
by
9.1k points
3 votes

Answer:


\cos(12)\cos(-3)-\sin(12)\sin(-3)​=0.98

Explanation:

Given : Expression
\cos(12)\cos(-3)-\sin(12)\sin(-3)

To find : Simplify the expression ?

Solution :

Expression
\cos(12)\cos(-3)-\sin(12)\sin(-3)

We know the trigonometry identity,


\cos A\cos B-\sin A\sin B=\cos (A+B)

Here, A=12 and B=-3


\cos(12)\cos(-3)-\sin(12)\sin(-3)=\cos(12+(-3))


\cos(12)\cos(-3)-\sin(12)\sin(-3)=\cos(12-3)


\cos(12)\cos(-3)-\sin(12)\sin(-3)​=\cos(9)

From calculator,
\cos 9=0.98 in degrees.

Therefore,
\cos(12)\cos(-3)-\sin(12)\sin(-3)=0.98

User Ejazz
by
8.3k points