Answer:
The area of the associated sector is
Explanation:
step 1
Find the radius of the circle
we know that
The circumference of a circle is equal to
![C=2\pi r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kmguleyi3d7rsbh4zj0jg7p7fumid62phf.png)
we have
![C=5\pi\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3m9up5pbwedt2yydn3vjmw0jmdj6pd5p0g.png)
substitute and solve for r
![5\pi=2\pi r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e3f9xy5wj7xklwllyrqw36pz0rl6kle42z.png)
![r=2.5\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kzszur6ccuojdws94fafkvcvcu8moq5wec.png)
step 2
Find the area of the circle
we know that
The area of the circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=2.5\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kzszur6ccuojdws94fafkvcvcu8moq5wec.png)
substitute
![A=\pi (2.5^(2))=6.25\pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shnuqi8i4uz628laage8vlk4e415zu69bo.png)
step 3
Find the area of the associated sector
we know that
subtends the complete circle of area
![6.25\pi\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g3yr552ozv8tjgt3wh0ts0tl52p4cqsyfa.png)
so
by proportion
Find the area of a sector with a central angle of
![\pi/3\ radians](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9y0iixrrfwtik4cud4kzzwg79qaihe5sln.png)
![(6.25\pi )/(2\pi) =(x)/(\pi/3)\\x=6.25*(\pi/3)/2\\ \\x=(25)/(24)\pi \ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z3vlindrd6wbe11wb6ak2u197e4hajmeup.png)