Answer:
![\large\boxed{V=(434\pi)/(3)\ cm^3}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v4jdkcxefv8sxhmqkmu9sozsvoi4l0o4ku.png)
Explanation:
We have a hemisphere with a radius 9 cm with a hemisphere cut out with radius 8cm.
Calculate a volume of a larger hemisphere and subtract from it a volume of smaller hemisphere.
The formula of a volume of a sphere:
![V_s=(4)/(3)\pi R^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c9x16a865h0cist6k8w5su8njz0zibp6ua.png)
R - radius
Therefore the formula of a volume of a hemisphere:
![V_(hs)=(1)/(2)\cdot(4)/(3)\pi R^3=(2)/(3)\pi R^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fcdt2u4c2sqnq20wl6nzq925t4639w1nle.png)
The volume of the larger hemisphere:
![V_l=(2)/(3)\pi(9^3)=(2)/(3)\pi(729)=(2)(\pi)(243)=486\pi\ cm^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ug1irj7js9xeieg1sjw3xhwavxu1i1l68u.png)
The volume of the smaller hemisphere:
![V_s=(2)/(3)\pi(8^3)=(2)/(3)\pi(512)=(1024\pi)/(3)\ cm^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gbtckp69rkiemvu4gcb20lv94loh3fl134.png)
The volume of wood:
![V=V_l-V_s](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9x0s95gw03vrvgj1jrqha3dvlrazk6vbak.png)
Substitute:
![V=486\pi-\dfac{1024\pi}{3}=(1458\pi)/(3)-(1024\pi)/(3)=(434\pi)/(3)\ cm^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dqe51ze3hnfrjj4n8t8au9z36f5r829i4s.png)