14.2k views
5 votes
Remember to show work and explain. Use the math font.

[Logarithms, Algebra 2]

Find the inverse of each function:


1. \: y = {5}^{ (x)/(3) }

2. \: y = { - 6}^(x)



User Tim Wu
by
8.7k points

1 Answer

3 votes

Answer:


\large\boxed{1.\ f^(-1)(x)=3\log_5x}\\\boxed{2.\ f^(-1)(x)=\log_6(-x)}

Explanation:


\log_ab=c\iff c=a^b\\\\\log_aa^n=n\\---------------------\\\\1.\\y=5^{(x)/(3)}\\\\\text{Exchange x and y}\\\\5^(y)/(3)=x\\\\\text{Solve for y:}\\\\5^(y)/(3)=x\qquad\log_5\text{of both sides}\\\\\log_55^(y)/(3)=\log_5x\Rightarrow(y)/(3)=\log_5x\qquad\text{multiply both sides by 3}\\\\y=3\log_5x\\---------------


2.\\y=-6^x\\\\\text{Exchange x and y:}\\\\-6^y=x\\\\\text{Solve for y:}\\\\-6^y=x\qquad\text{change the signs}\\\\6^y=-x\qquad\log_6\ \text{of both sides}\\\\\log_66^y=\log_6(-x)\Rightarrow y=\log_6(-x)

User JMabee
by
7.9k points