148k views
3 votes
Expand the binomial (a+2)^4

2 Answers

1 vote

Answer:

Explanation:

Expand the binomial (a+2)^4-example-1
User Akyidrian
by
8.7k points
2 votes

Answer:
a^4+8a^3+24a^2+32a+16

Explanation:

The binomial expansion of
(a+b)^n=^nC_0a^nb^(0)+^nC_1a^(n-1)b^1+^nC_2a^(n-2)b^2+.........+^nC_na^0b^n

For
(a+2)^4 , n=4 and b= 2 , we have

Then, the binomial expansion of
(a+2)^4 will be :


(a+2)^4=^4C_0a^4(2)^(0)+^4C_1a^(4-1)2^1+^4C_2a^(4-2)2^2++^4C_3a^(4-3)2^3++^4C_4a^(0)2^4\\\\=(1)a^4+(4)a^3(2)+(4!)/(2!(4-2)!)a^2(4)+(4)a(8)+(1)(16)


^nC_0=^nC_n=0 and
^nC_1=^nC_(n-1)=n


=a^4+8a^3+(6)a^2(4)+32a+16\\\\=a^4+8a^3+24a^2+32a+16

Hence, the binomial expansion of
(a+2)^4=a^4+8a^3+24a^2+32a+16

User Carlos Ruana
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories