Answer:
The minimum value = -38
Explanation:
∵ f(x) = x² - 12x - 2
∵ -12x ÷ 2 = -6x ⇒ -6 × x
∴ (x - 6)² = x² - 12x + 36
∴ Add and subtract 36 in f(x)
∴ f(x) = (x² - 12x + 36) - 36 - 2
∴ f(x) = (x - 6)² - 38 ⇒ completing square
∴ The vertex of the parabola is (6 , -38)
∵ Its minimum point because the coefficient of x² is positive
∴ The minimum value = -38