QUESTION 1
i) The given function is
![f(x)=(3(x-1)(x+1))/((x-3)(x+3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/5x1iujit0ehq9ovkdie2fq6lr4nd7xtq6u.png)
The domain is
![(x-3)(x+3)\\e0](https://img.qammunity.org/2020/formulas/mathematics/high-school/x967dqob51jo3stkuf6vcay9eysbbg3b7d.png)
![(x-3)\\e0,(x+3)\\e0](https://img.qammunity.org/2020/formulas/mathematics/high-school/qrxbqbzdyzrfn668582w4lidbw3c526e1e.png)
![x\\e3,x\\e-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/q1p8zq3urth54mfukjlsy3xla7xdhtcog4.png)
ii) To find the vertical asymptote equate the denminator to zero.
![(x-3)(x+3)\=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/pxqkzbbldunzc994qlh204rweaz8ahkkol.png)
![(x-3)=0,(x+3)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/jufc5mnf2k5ba8myirk6musgq3f6j9dfg1.png)
![x=3,x=-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/ptc5zimm7ayb8v67p0iio5xyfdulfs84qg.png)
iii) To find the roots equate the numerator zero.
![x=1, x=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/cf5e3az3hizreo9o327vzufpkuv0ki395p.png)
iv) To find the y-intercept substitute
into the function;
![f(0)=(3(0-1)(0+1))/((0-3)(0+3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/r4ikic8wgmpfm2jqqizwgzsucs2x6e1ix0.png)
![f(0)=(-3)/((-3)(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/y7d669n0ukv39nhrtpgkcedbdrb9b41he2.png)
![f(0)=(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kii7tmnr5e287jk1zd4s8kjjoyzsh26q5z.png)
The y-intercept is
![(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o08xg954t1gbzo9avralvfomcybk63rm02.png)
v) The horizontal asymptote is given by
![lim_(x\to \infty)(3(x-1)(x+1))/((x-3)(x+3))=3](https://img.qammunity.org/2020/formulas/mathematics/high-school/fdp79fwrghr5hjghd55nn7bm986tbyfhyr.png)
The horizontal asymptote is y=3
vi) The rational function has no common linear factor.
This rational function has no holes.
vii) This rational function is a proper function. It has no oblique asymptote.