101k views
1 vote
Lowering powers write in terms of first power of cosine. Cos^6

1 Answer

7 votes

The main identity you need is the double angle one for cosine:


\cos^2x=\frac{1+\cos2x}2

We get


\cos^6x=(\cos^2x)^3=\left(\frac{1+\cos2x}2\right)^3=\frac{(1+\cos2x)^3}8

Expand the numerator to apply the identity again:


\cos^6x=\frac{1+3\cos2x+3\cos^22x+\cos^32x}8


\cos^6x=\frac{1+3\cos2x+3\left(\frac{1+\cos2(2x)}2\right)+\cos2x\left(\frac{1+\cos2(2x)}2\right)}8


\cos^6x=\frac{1+3\cos2x+\frac32+\frac32\cos4x+\frac12\cos2x(1+\cos4x)}8


\cos^6x=\frac5{16}+\frac7{16}\cos2x+\frac3{16}\cos4x+\frac1{16}\cos2x\cos4x

Finally, make use of the product identity for cosine:


\cos2x\cos4x=\frac{\cos6x+\cos2x}2

so that ultimately,


\cos^6x=\frac5{16}+\frac7{16}\cos2x+\frac3{16}\cos4x+\frac1{32}\cos2x+\frac1{32}\cos6x


\cos^6x=\frac5{16}+(15)/(32)\cos2x+\frac3{16}\cos4x+\frac1{32}\cos6x

User Thomas Schneiter
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories