101k views
1 vote
Lowering powers write in terms of first power of cosine. Cos^6

1 Answer

7 votes

The main identity you need is the double angle one for cosine:


\cos^2x=\frac{1+\cos2x}2

We get


\cos^6x=(\cos^2x)^3=\left(\frac{1+\cos2x}2\right)^3=\frac{(1+\cos2x)^3}8

Expand the numerator to apply the identity again:


\cos^6x=\frac{1+3\cos2x+3\cos^22x+\cos^32x}8


\cos^6x=\frac{1+3\cos2x+3\left(\frac{1+\cos2(2x)}2\right)+\cos2x\left(\frac{1+\cos2(2x)}2\right)}8


\cos^6x=\frac{1+3\cos2x+\frac32+\frac32\cos4x+\frac12\cos2x(1+\cos4x)}8


\cos^6x=\frac5{16}+\frac7{16}\cos2x+\frac3{16}\cos4x+\frac1{16}\cos2x\cos4x

Finally, make use of the product identity for cosine:


\cos2x\cos4x=\frac{\cos6x+\cos2x}2

so that ultimately,


\cos^6x=\frac5{16}+\frac7{16}\cos2x+\frac3{16}\cos4x+\frac1{32}\cos2x+\frac1{32}\cos6x


\cos^6x=\frac5{16}+(15)/(32)\cos2x+\frac3{16}\cos4x+\frac1{32}\cos6x

User Thomas Schneiter
by
8.3k points