Answer:
Solution set of the quadratic inequality is { x : x ∈ R and x < -2 }
Explanation:
Given Quadratic inequality ,
![4(x+2)^2<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/orr2zq97bteoidp3qw23said0l2jgstiw5.png)
We have to find solution set of the given quadratic inequality.
consider,
![4(x+2)^2<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/orr2zq97bteoidp3qw23said0l2jgstiw5.png)
transpose 4 to RHS
![(x+2)^2<(0)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ls5omrhinvwei54xofil8e56iz7dl0gwo1.png)
![(x+2)^2<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/coi3ba1bn8opf3x2rllac850ortluoxwur.png)
Square root both side,
![√((x+2)^2)<√(0)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qd0s8z0u3f7iszvurjsdhuvwm8nkow3ig6.png)
![x+2<0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9bfigsloxq8mn68viq62gb5iahvomj7vx4.png)
transpose 2 to RHS
![x<0-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w0j53efkmdwgxz03ntp6adfn523jryo47c.png)
x < -2
Solution set of the quadratic inequality = { x : x ∈ R and x < -2 }
Therefore, Solution set of the quadratic inequality is { x : x ∈ R and x < -2 }