27.1k views
8 votes
If f(x) = 2/3x - 6, find f^-1. Justify your answer using the composition of functions f(f^-1(x))=f^-1(f(x))

User Heiflo
by
3.5k points

1 Answer

6 votes

Answer:


f^(-1)(x)= (3)/(2)(x+6)


f(f^(-1)(x)) = f^(-1)(f(x))= x

Explanation:

Given


f(x) = (2)/(3)x - 6

Required

Determine
f^(-1)(x)


f(x) = (2)/(3)x - 6

Represent f(x) as y


y=(2)/(3)x - 6

Swap the positions of x and y


x=(2)/(3)y - 6

Add 6 to both sides


x+6=(2)/(3)y - 6+6


x+6=(2)/(3)y

Multiply both sides by 3


3(x+6)=(2)/(3)y * 3


3(x+6)=2y

Divide both sides by 2


(3)/(2)(x+6)=(2y)/(2)


(3)/(2)(x+6)=y


y= (3)/(2)(x+6)

Replace y with
f^(-1)(x)


f^(-1)(x)= (3)/(2)(x+6)

Justify the result:

First, we solve for
f(f^(-1)(x))


f(x) = (2)/(3)x - 6


f(x) = (2)/(3)x - 6 becomes


f(f^(-1)(x)) = (2)/(3)x - 6

Substitute
(3)/(2)(x + 6) for x


f(f^(-1)(x)) = (2)/(3)((3)/(2)(x + 6)) - 6


f(f^(-1)(x)) = (2*3)/(3*2)(x + 6)- 6


f(f^(-1)(x)) = (6)/(6)(x + 6)- 6


f(f^(-1)(x)) = 1*(x + 6)- 6


f(f^(-1)(x)) = x + 6- 6


f(f^(-1)(x)) = x

Next, we solve
f^(-1)(f(x))


f^(-1)(x)= (3)/(2)(x+6)


f^(-1)(x)= (3)/(2)(x+6) becomes


f^(-1)(f(x))= (3)/(2)(x+6)

Substitute
(2)/(3)x - 6 for x


f^(-1)(f(x))= (3)/(2)((2)/(3)x) - 6+6


f^(-1)(f(x))= (3)/(2)((2)/(3)x)


f^(-1)(f(x))= (2*3)/(3*2)x


f^(-1)(f(x))= (6)/(6)x


f^(-1)(f(x))= 1*x


f^(-1)(f(x))= x

Hence:


f(f^(-1)(x)) = f^(-1)(f(x))= x

User Ishan Chatterjee
by
3.4k points