27.1k views
8 votes
If f(x) = 2/3x - 6, find f^-1. Justify your answer using the composition of functions f(f^-1(x))=f^-1(f(x))

User Heiflo
by
7.9k points

1 Answer

6 votes

Answer:


f^(-1)(x)= (3)/(2)(x+6)


f(f^(-1)(x)) = f^(-1)(f(x))= x

Explanation:

Given


f(x) = (2)/(3)x - 6

Required

Determine
f^(-1)(x)


f(x) = (2)/(3)x - 6

Represent f(x) as y


y=(2)/(3)x - 6

Swap the positions of x and y


x=(2)/(3)y - 6

Add 6 to both sides


x+6=(2)/(3)y - 6+6


x+6=(2)/(3)y

Multiply both sides by 3


3(x+6)=(2)/(3)y * 3


3(x+6)=2y

Divide both sides by 2


(3)/(2)(x+6)=(2y)/(2)


(3)/(2)(x+6)=y


y= (3)/(2)(x+6)

Replace y with
f^(-1)(x)


f^(-1)(x)= (3)/(2)(x+6)

Justify the result:

First, we solve for
f(f^(-1)(x))


f(x) = (2)/(3)x - 6


f(x) = (2)/(3)x - 6 becomes


f(f^(-1)(x)) = (2)/(3)x - 6

Substitute
(3)/(2)(x + 6) for x


f(f^(-1)(x)) = (2)/(3)((3)/(2)(x + 6)) - 6


f(f^(-1)(x)) = (2*3)/(3*2)(x + 6)- 6


f(f^(-1)(x)) = (6)/(6)(x + 6)- 6


f(f^(-1)(x)) = 1*(x + 6)- 6


f(f^(-1)(x)) = x + 6- 6


f(f^(-1)(x)) = x

Next, we solve
f^(-1)(f(x))


f^(-1)(x)= (3)/(2)(x+6)


f^(-1)(x)= (3)/(2)(x+6) becomes


f^(-1)(f(x))= (3)/(2)(x+6)

Substitute
(2)/(3)x - 6 for x


f^(-1)(f(x))= (3)/(2)((2)/(3)x) - 6+6


f^(-1)(f(x))= (3)/(2)((2)/(3)x)


f^(-1)(f(x))= (2*3)/(3*2)x


f^(-1)(f(x))= (6)/(6)x


f^(-1)(f(x))= 1*x


f^(-1)(f(x))= x

Hence:


f(f^(-1)(x)) = f^(-1)(f(x))= x

User Ishan Chatterjee
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories