17.7k views
2 votes
Divide. (18x^3 + 12x^2 - 3x) ÷ 6x^2

User Ukliviu
by
8.2k points

2 Answers

5 votes


\bold{[ \ Answer \ ]}


\boxed{\bold{(x^3\left(6x^2+4x-1\right))/(2)}}


\bold{[ \ Explanation \ ]}


  • \bold{Divide: \ \left(18x^3\:+\:12x^2\:-\:3x\right)\:/ \:6x^2}


\bold{-------------------}


  • \bold{Rewrite}


\bold{18x^3+12x^2-3x \ = \ x^2(x\left(6x^2+4x-1\right))/(2)}


  • \bold{Rewrite}


\bold{x^2(x\left(6x^2+4x-1\right))/(2)}


  • \bold{Multiply \ Fractions \ (a\cdot (b)/(c)=(a\:\cdot \:b)/(c))}


\bold{(x\left(6x^2+4x-1\right)x^2)/(2)}


  • \bold{Rewrite}


\bold{x\left(6x^2+4x-1\right)x^2 \ = \ x^3\left(6x^2+4x-1\right)}


  • \bold{Simplify}


\bold{(x^3\left(6x^2+4x-1\right))/(2)}


\boxed{\bold{[] \ Eclipsed \ []}}

User Cbeckner
by
7.3k points
2 votes

For this case, we must divide the following expression:


\frac {18x ^ 3 + 12x ^ 2-3x} {6x ^ 2} =

We separate:


\frac {18x ^ 3} {6x ^ 2} + \frac {12x ^ 2} {6x ^ 2} - \frac {3x} {6x ^ 2} =

By definition of power properties we have to:


\frac {a ^ m} {a ^ n} = a ^ {m-n}

So:


3x ^ {3-2} + 2x^(2-2) - \frac {1} {2} x ^ {1-2} =\\3x ^ 1 + 2- \frac {1} {2} x ^ {- 1} =

By definition of power properties we have to:


a ^ {- 1} = \frac {1} {a ^ 1} = \frac {1} {a}

Then:


3x + 2- \frac {1} {2} * \frac {1} {x} =\\3x + 2- \frac {1} {2x}

Answer:


3x + 2- \frac {1} {2x}

User MildlySerious
by
8.9k points