20.4k views
3 votes
Use this equation for the following problems: 2NaN3 --> 2Na+3N2

density of N2=0.92g/L
How many grams of NaN3 are needed to make 23.6L of N2?​
How many mL of N2 result if 8.3g Na are also produced?

1 Answer

2 votes

Answer:

1) 65.0

2) 16.434 L = 16434 mL.

Step-by-step explanation:

2NaN₃ → 2Na + 3N₂,

  • It is clear from the balanced equation that 2.0 moles of NaN₃ are decomposed to 2.0 moles of Na and 3.0 moles of N₂.

Q1: How many grams of NaN₃ are needed to make 23.6L of N₂?​

Density of N₂ = 0.92 g/L which means that every 1.0 L of N₂ contains 0.92 g of N₂.

  • Now, we can get the mass of N₂ in 23.6 L N₂ using cross multiplication:

1.0 L of N₂ contains → 0.92 g of N₂.

23.6 L of N₂ contains → ??? g of N₂.

∴ The mass of N₂ in 23.6 L of N₂ = (23.6 L)(0.92 g)/(1.0 L) = 21.712 g.

  • We can get the no. of moles of 23.6 L of N₂ (21.712 g) using the relation:

n = mass/molar mass = (21.712 g)/(28.0 g/mol) = 0.775 mol.

  • We can get the no. of moles of NaN₃ needed to produce 0.775 mol of N₂:

using cross multiplication:

2.0 moles of NaN₃ produce → 3.0 moles of N₂, from the balanced equation.

??? mol of NaN₃ produce → 0.775 moles of N₂.

∴ The no. of moles of NaN₃ needed = (2.0 mol)(0.775 mol)/(3.0 mol) = 0.517 mol.

  • Finally, we can get the grams of NaN₃ needed:

mass = no. of moles x molar mass = (0.517 mol)(65.0 g/mol) = 33.6 g.

Q2: How many mL of N₂ result if 8.3 g Na are also produced?

  • We need to get the no. of moles of 8.3 g Na using the relation:

n = mass/atomic mass = (8.3 g)/(22.98 g/mol) = 0.36 mol.

  • We can get the no. of moles of N₂ produced with 0.36 mol of Na:

using cross multiplication:

2.0 moles of Na produced with → 3.0 moles of N₂, from the balanced equation.

0.36 moles of Na produced with → ??? moles of N₂.

∴ The no. of moles of N₂ needed = (3.0 mol)(0.36 mol)/(2.0 mol) = 0.54 mol.

  • We can get the mass of 0.54 mol of N₂:

mass = no. of moles x molar mass = (0.54 mol)(28.0 g/mol) = 15.12 g.

  • Now, we can get the mL of 15.12 g of N₂:

using cross multiplication:

1.0 L of N₂ contains → 0.92 g of N₂, from density of N₂ = 0.92 g/L.

??? L of N₂ contains → 15.12 g of N₂.

∴ The volume of N₂ result = (1.0 L)(15.12 g)/(0.92 g) = 16.434 L = 16434 mL.

User Matthias Baetens
by
5.5k points