22.6k views
3 votes
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

f s(x) = 2x^2 + 3x - 4, and t(x) = x + 4 then s(x) · t(x) =

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! f s(x) = 2x^2 + 3x - 4, and t(x-example-1
User Musingsole
by
8.2k points

2 Answers

5 votes

Answer:


\large\boxed{A.\ 2x^3+11x^2+8x-16}

Explanation:


s(x)=2x^2+3x-4,\ t(x)=x+4\\\\s(x)\cdot t(x)\to\text{substitute:}\\\\s(x)\cdot t(x)=(2x^2+3x-4)(x+4)\\\\\text{Use FOIL:}\ (a+b)(c+d)=ac+ad+bc+bd\\\\s(x)\cdot t(x)=(2x^2)(x)+(2x^2)(4)+(3x)(x)+(3x)(4)+(-4)(x)+(-4)(4)\\\\=2x^3+8x^2+3x^2+12x-4x-16\\\\\text{Combine like terms}\\\\s(x)\cdot t(x)=2x^3+(8x^2+3x^2)+(12x-4x)-16\\\\s(x)\cdot t(x)=2x^3+11x^2+8x-16

User Pablo Mescher
by
7.5k points
5 votes

Answer: A) 2x³ + 11x² + 8x - 16

Explanation:

s(x) · t(x) = (2x² + 3x - 4)(x + 4)

= x(2x² + 3x - 4) + 4(2x² + 3x - 4)

= 2x³ + 3x² - 4x + 8x² + 12x - 16

= 2x³ + 3x² - 4x + 8x² + 12x - 16

= 2x³ + 11x² + 8x - 16

User Tutak
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories