Answer:
Option B.
![6.75\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/331qcsqitc5hui2qef4ngedcyh9cxw4eoq.png)
Explanation:
we know that
The area of a circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=3\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vu4i0j8o6rkx9qxbfpcwdxhqn9fnsfnu9n.png)
substitute
![A=\pi (3^(2))=9 \pi\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/oyijo5wdowe2x7ujzbj9i1e30gq2skf273.png)
Remember that
radians subtends the complete circle of area
![9 \pi\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pw4yi5i4n4zujtik244of5oxztuocxp59j.png)
so
by proportion
Find the area of the related sector for a central angle of
radians
Let
x------> the area of the related sector
![(9 \pi)/(2\pi)(cm^(2))/(radians) =(x)/(1.5)(cm^(2))/(radians)\\ \\x=9*1.5/2\\ \\x= 6.75\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/t2lxcqp69ferx4bdyctf8q943sdhb036tg.png)