Answer:
C. hyperbola;
![9x^2-25y^2-250y-850=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ed6reg7siala005l9fsmrmtaj1vgs36w9g.png)
Explanation:
The given conic has equation:
![9x^2-25y^2=225](https://img.qammunity.org/2020/formulas/mathematics/high-school/juh9x7s4htlni4qgynolx711qo1x9e5tgm.png)
Divide through by 225.
![(9x^2)/(225)-(25y^2)/(225)=(225)/(225)](https://img.qammunity.org/2020/formulas/mathematics/high-school/h25j445j3t4359390sipae4eg6dhuo27rz.png)
![(x^2)/(25)-(y^2)/(9)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/9iermbyjgw20kw7hnszm2pddmlcbizkyks.png)
This is a hyperbola centered at the origin.
The hyperbola has been translated from the origin to (0,5).
The translated hyperbola will have equation;
![((x-0)^2)/(25)-((y-5)^2)/(9)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/g2nxzrkjb5zlwobkfmckhhart16x8l7dpf.png)
Multiply through by 225.
![9(x-0)^2-25(y-5)^2=225](https://img.qammunity.org/2020/formulas/mathematics/high-school/g2ctmo1aunx609nwauwm2oo4cava199ww8.png)
Expand
![9x^2-25(y^2-10y+25)=225](https://img.qammunity.org/2020/formulas/mathematics/high-school/n89jbdwrof46cgqaa9wqhukpqavmvycu1r.png)
![9x^2-25y^2+250y-625=225](https://img.qammunity.org/2020/formulas/mathematics/high-school/b2pxu2jv9uyt5io26v1mc0vgau6mubyj3r.png)
Rewrite in general form;
![9x^2-25y^2+250y-625-225=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/tjizvhyzmzi4kxhqasacdjqdbgxugw4vhu.png)
![9x^2-25y^2+250y-850=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/sgz7bb7jhdz6tlin4s01fsbirj1e08sfpq.png)