Answer:
b. ellipse;
![3x^2+y^2+6x-8y+13=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ugl2pcof7fnqff6urcijxtrep1z2nzg5h.png)
Explanation:
The given equation is
![4y^2+12x^2=24](https://img.qammunity.org/2020/formulas/mathematics/high-school/xzmbiviyfpksj33b1emwv56lp9czphifol.png)
Divide through by 24;
![(y^2)/(6)+(x^2)/(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/qds203jjsf97po4w5szk06s7pyjpg2ofp0.png)
This is an ellipse that has its center at the origin.
The ellipse is translated from the origin to (-1,4).
The equation of the translated ellipse is
![((y-4)^2)/(6)+((x+1)^2)/(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/kdzuvn7x1uwloa5qhznv9efqnyiylotis1.png)
Multiply through by 6.
![(y-4)^2+3(x+1)^2=6](https://img.qammunity.org/2020/formulas/mathematics/high-school/rhp7yk0x46j5q3902436a25jj7qpfon2ez.png)
Expand;
![y^2-8y+16+3(x^2+2x+1)=6](https://img.qammunity.org/2020/formulas/mathematics/high-school/e3y20mzrz716d8vzjgj8y7m117xfrii6iu.png)
![y^2-8y+16+3x^2+6x+3=6](https://img.qammunity.org/2020/formulas/mathematics/high-school/gr7ol52d3dildj1y1514333tmg7efpqt0n.png)
This implies that;
![3x^2+y^2+6x-8y+13=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ugl2pcof7fnqff6urcijxtrep1z2nzg5h.png)