137k views
2 votes
Simplify the expression ?

Simplify the expression ?-example-1
User Carlo Wood
by
8.4k points

1 Answer

6 votes

Answer:

The answer is cscx(cscx - 1) ⇒ the second answer

Explanation:

∵ csc²x = cot²x + 1


(cot^(2)x+1-1 )/(1+sinx)=(cot^(2)x )/(1+sinx)

Multiply the fraction by its conjugate 1 - sinx (up and down)


(cot^(2)x )/(1+sinx)*(1-sinx)/(1-sinx)=(cot^(2)x(1-sinx) )/(1-sin^(2)x)

∵ 1 - sin²x = cox²x


(cot^(2)x(1-sinx) )/(cos^(2)x )

∵ cot²x = cos²x/sin²x


(1-sinx)/(sin^(x))=(1)/(sin^(2)x)-(sinx)/(sin^(2)x)=csc^(2)x-cscx

Take cscx as a common factor

cscx(cscx - 1)

User Makeda
by
8.4k points