Answer:
Yes, two sides are perpendicular and the side lengths fit the Pythagoras theorem.
Explanation:
Given the triangle whose coordinates are A(0,2), B(-2, -1) and C(1, -3)
we have to find the given triangle is right angled triangle or not.
First we have to find the length of sides of triangle ABC
![\text{By distance formula, the length of line joining the points }(x_1,y_1)\text{ and }(x_2, y_2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yam9t5fb9s2qq7ffnyb8xv843h2x1kxi7t.png)
![Distance=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fr328ctd2ohcg1p6uxe99z9yko83xfu788.png)
Therefore, length of AB, BC, and AC is
![AB=√((-2-0)^2+(-1-2)^2)=√(4+9)=√(13) units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hlwjj78s8ssar1iybt8rm0aikzrceksxnx.png)
![BC=√((1-(-2))^2+(-3-(-1))^2)=√(9+4)=√(13) units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ax9rkenki8kiwkze2a8htiaqerc83m1zvl.png)
![AC=√((1-0)^2+(-3-2)^2)=√(1+25)=√(26) units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ibnszz4f2lnfmlehma8m310vi0xe5f3ulg.png)
If given triangle is right angled triangle then the length of sides must satisfy Pythagoras theorem i.e
![AC^2=AB^2+BC^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/gu26ic3sn5r1uk2g4pjfipow4dkt1mi3bc.png)
![(√(26))^2=(√(13))^2+(√(13))^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fd8cnechjvtd5uzho0l5hnor19wwpsxm6a.png)
![26=13+13](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ahl6z13xfq2hil4zgtvhuhjtgyruek2q0p.png)
![26=26](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wffe2hqzff7krn0bjr8o60e4pb7ylf9vjb.png)
which is true.
Hence, Pythagoras theorem is satisfied.
Hence option C is correct.