23.1k views
5 votes
Please helpppp me with calculus

Please helpppp me with calculus-example-1
User Aracely
by
8.1k points

1 Answer

6 votes

The definition says


f'(x)=\displaystyle\lim_(h\to0)\frac{f(x+h)-f(x)}h

###

With
f(x)=(x+2)^2+8, we get


f'(x)=\displaystyle\lim_(h\to0)\frac{((x+h+2)^2+8)-((x+2)^2+8)}h=\lim_(h\to0)\frac{(x+2)^2+2h(x+2)+h^2+8-(x+2)^2-8}h


f'(x)=\displaystyle\lim_(h\to0)\frac{2h(x+2)+h^2}h=\lim_(h\to0)2(x+2)+h=2(x+2)

###

With
f(x)=√(2x-5):


f'(x)=\displaystyle\lim_(h\to0)\frac{√(2(x+h)-5)-√(2x-5)}h=\lim_(h\to0)((2(x+h)-5)-(2x-5))/(h(√(2(x+h)-5)+√(2x-5)))


f'(x)=\displaystyle\lim_(h\to0)(2h)/(h(√(2x+2h-5)+√(2x-5)))=\lim_(h\to0)\frac2{√(2x+2h-5)+√(2x-5)}


f'(x)=\frac2{√(2x-5)+√(2x-5)}=\frac1{√(2x-5)}

###

With
f(x)=\frac1{3x-1}:


f'(x)=\displaystyle\lim_(h\to0)\frac{\frac1{3(x+h)-1}-\frac1{3x-1}}h=\lim_(h\to0)((3x-1)-(3(x+h)-1))/(h(3(x+h)-1)(3x-1))


f'(x)=\displaystyle\lim_(h\to0)(-3h)/(h(3x+3h-1)(3x-1))=\lim_(h\to0)(-3)/((3x+3h-1)(3x-1))


f'(x)=-\frac3{(3x-1)^2}

User Davhab
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories