Explanation:
OK, let's assume it this way:
Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!
Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!=(2.1!-1!)+(3.2!-2!)+(4.3!-3!)+...+((n-1)n!-n!)=(2!-1!)+(3!-2!)+(4!-3!)+
Sn=1.1!+2.2!+3.3!+...+n.n!=(2‐1).1!+(3-1).2!+(4-1)3!+...+((n+1)-1).n!=(2.1!-1!)+(3.2!-2!)+(4.3!-3!)+...+((n-1)n!-n!)=(2!-1!)+(3!-2!)+(4!-3!)+...+(n+1)!-n!=(n+1)!-1!=(n+1)!-1
and boom problem solved