40.0k views
18 votes
X= a ( cost +logtan t/2 y = asin t find dy / dx​

1 Answer

9 votes

Answer:
(dy)/(dx) = \tan t

Step-by-step explanation:


x = a(\cos t + \log \tan\frac{t}2)

Differentiate with respect to t,


(dx)/(dt) =a \frac{d{(\cos t + \log\tan \frac{t}2)}}{dt}


= a[(d(\cos t))/(dt) + \frac{d(\log\tan \frac{t}2)}{dt}]


= a[ -\sin t + \frac{1}{\tan  \frac{t}2 }* sec^2\frac{t}2* \frac12]


= a [ -\sin t + \frac12 \frac{1}{\sin \frac{t}2\cdot\cos \frac{t}2 }]

Since
2\sin A\cdot\cos A = \sin2 A


= a [ -\sin t + \frac1{\sin t}]


= a ( 1 - \sin^2 t)/(\sin t)


= a(\cos^2t)/(\sin t)


= a\cot t\cdot \cos t .......(1)

again,
y = a\sin t


(dy)/(dt) = a\cos t .......(2)

now,
(dy)/(dx) =\frac {(dy)/(dt)}{(dx)/(dt)} [from (1) and (2)]


=\frac {a\cos t}{a\cot t.\cos t}


= (1)/(\cot t )

Hence,
(dy)/(dx) = \tan t

User Dimuth
by
3.4k points