77.5k views
4 votes
How to solve the indefinite integral

How to solve the indefinite integral-example-1

2 Answers

3 votes

Answer:


(1)/(4)x^4-x^2+3x+c

Explanation:

Use the the integration rules for powers of x:
\int x^n dx = (1)/((n+1)) x^(n+1) and the additive property of integrals:


f(x) = \int (x^3-2x+3)dx= \int x^3 dx-2\int x dx+\int 3 dx = \\=(1)/(4)x^4-x^2+3x+c

with c being an arbitrary constant.

2 votes

Answer:


\displaystyle f(x) = (x^4)/(4) - x^2 + 3x + C

General Formulas and Concepts:

Calculus

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = \int {\bigg( x^3 - 2x + 3 \bigg)} \, dx

Step 2: Integrate

  1. Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle f(x) = \int {x^3} \, dx - \int {2x} \, dx + \int {3} \, dx
  2. Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle f(x) = \int {x^3} \, dx - 2\int {x} \, dx + 3\int {} \, dx
  3. [Integrals] Integration Rule [Reverse Power Rule]:
    \displaystyle f(x) = (x^4)/(4) - 2 \bigg( (x^2)/(2) \bigg) + 3x + C
  4. Simplify:
    \displaystyle f(x) = (x^4)/(4) - x^2 + 3x + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Eftpotrm
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories