Answer:
D.
![\sqrt(6)/(x-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3vn8422a3863swzmkf74h0iplo5jojxnlx.png)
Explanation:
Given:
![(√(30(x-1)) )/(√(5(x-1)^2) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d1zgfevx8cf19yviv2ouqpj74353g6zk1x.png)
We can write
![√(xy) = √(x) √(y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o8pckgnrxeltl2mr8l2p80i71cifq0r8ci.png)
Using this property we can rewrite the given expression as
=
![(√(30)√(x-1) )/(√(5) √(x-1)√(x-1) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9ltok60kvio3cwratv9wshcq22mgka5hpd.png)
Now we can simplify √30/√5 = √6 and we can cancel out √(x - 1) both in the numerator and in the denominator, so we get
=
![\sqrt(6)/(x-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3vn8422a3863swzmkf74h0iplo5jojxnlx.png)
Therefore, the answer is D.
![\sqrt(6)/(x-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3vn8422a3863swzmkf74h0iplo5jojxnlx.png)