258,597 views
4 votes
4 votes
Can someone help me on this pls? It’s urgent, so ASAP (it’s geometry)

Write formal proofs using LL Theorem.

Can someone help me on this pls? It’s urgent, so ASAP (it’s geometry) Write formal-example-1
User Raphael Roth
by
3.4k points

1 Answer

18 votes
18 votes

Question 6

1)
\overline{AB} \cong \overline{BD},
\overline{CD} \perp \overline{BD}, O is the midpoint of
\overline{BD},
\overline{AB} \cong \overline{CD} (given)

2)
\angle ABO, \angle ODC are right angles (perpendicular lines form right angles)

3)
\triangle ABO, \triangle CDO are right triangles (a triangle with a right angle is a right triangle)

4)
\overline{BO} \cong \overline{OD} (a midpoint splits a segment into two congruent parts)

5)
\triangle ABO \cong \triangle CDO (LL)

Question 7

1)
\angle ADC, \angle BDC are right angles),
\overline{AD} \cong \overline{BD}

2)
\overline{CD} \cong \overline{CD} (reflexive property)

3)
\triangle CDA, \triangle CDB are right triangles (a triangle with a right angle is a right triangle)

4)
\triangle ADC \cong \triangle BDC (LL)

5)
\overline{AC} \cong \overline{BC} (CPCTC)

Question 8

1)
\overline{CD} \perp \overline{AB}, point D bisects
\overline{AB} (given)

2)
\angle CDA, \angle CDB are right angles (perpendicular lines form right angles)

3)
\triangle CDA, \triangle CDB are right triangles (a triangle with a right angle is a right triangle)

4)
\overline{AD} \cong \overline{DB} (definition of a bisector)

5)
\overline{CD} \cong \overline{CD} (reflexive property)

6)
\triangle ADC \cong \triangle BDC (LL)

7)
\angle ACD \cong \angle BCD (CPCTC)

User Ooga
by
3.1k points