189k views
3 votes
Find the volume of the sphere.

Either enter an exact answer in terms of π or use 3.14, point, 14 for π and round your final answer to the nearest hundredth

Find the volume of the sphere. Either enter an exact answer in terms of π or use 3.14, point-example-1
User Drstevok
by
8.0k points

2 Answers

4 votes


\textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=8 \end{cases}\implies \begin{array}{llll} V=\cfrac{4\pi (8)^3}{3}\implies V=\cfrac{2048\pi }{3}\\\\ V\approx 2144.66 \end{array}

User Aashutosh Rathi
by
7.9k points
2 votes

Answer:

The volume of sphere is 2143.57.

Step-by-step Step-by-step explanation:

Here's the required formula to find the volume of sphere :


{\star{\small{\underline{\boxed{\sf{\purple{Volume_((Sphere)) = (4)/(3)\pi {r}^(3)}}}}}}}

  • »» π = 3.14
  • »» r = radius


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3)\pi {r}^(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(8)}^(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(8 * 8 * 8)}}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(64 * 8)}}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 {(512)}}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4)/(3) * 3.14 * 512}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (4 * 3.14 * 512)/(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (12.56* 512)/(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) = (6430.72)/(3)}}}


{\dashrightarrow{\sf{Volume_((Sphere)) \approx 2143.57}}}


\star{\underline{\boxed{\sf{\red{Volume_((Sphere)) \approx 2143.57}}}}}

Hence, the volume of sphere is 2143.57.


\rule{300}{2.5}

User Tgoneil
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories