Answer:
![(400)/(1,001)\approx 0.3996](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a0ulrszi084t0wvsh7pzx3e0jzhq07uxc3.png)
Explanation:
There are 10 unique consonant tiles an 5 unique vowel tiles, 15 tiles in total.
You can select 5 different tiles in
![C^(15)_5=(15!)/(5!(15-5)!)=(11\cdot 12\cdot 13\cdot 14\cdot 15)/(2\cdot 3\cdot 4\cdot 5)=11\cdot 13\cdot 7\cdot 3=3,003](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7hqw5vrhdrqrhl2ncwv62noz5zzztfz0k7.png)
different ways.
You can select 3 different consonants and 2 different vowels in
![C^(10)_3\cdot C^5_2=(10!)/(3!(10-3)!)\cdot (5!)/(2!(5-2)!)=(8\cdot 9\cdot 10)/(2\cdot 3)\cdot (4\cdot 5)/(2)=4\cdot 3\cdot 10\cdot 2\cdot 5=1,200](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kgbf3zgc26msf7nz6ja38ighapdgtpqlac.png)
different ways.
Thus, the probability is
![Pr=(1,200)/(3,003)=(400)/(1,001)\approx 0.3996.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i8b9hdod6d9e5clanzzm3zagmbu0ah10bp.png)