Answer:
![69.08\ in^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/idyaeeceuejfs8tbsl505hqertahok685x.png)
Explanation:
we know that
The volume of the figure is equal to the volume of the cone plus the volume of the cylinder
Find the volume of the cone
The volume of the cone is equal to
![V=(1)/(3)\pi r^(2)h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/25zf7q1ro45wq3eqm5bebwne6mqikz52qb.png)
we have
![r=2/2=1\ in](https://img.qammunity.org/2020/formulas/mathematics/college/auj113bt4ww6kn4d1r942bwlse36b6ovtf.png)
![h=3\ in](https://img.qammunity.org/2020/formulas/mathematics/college/jipwrxkkyjwx9nlpwkiwl79nsvbeidjv0y.png)
substitute
![V=(1)/(3)\pi (1^(2))(3)=\pi\ in^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/p7jk76qc5cwiinycqfcwm9sks17wjdp8lh.png)
Find the volume of the cylinder
The volume of the cylinder is equal to
![V=\pi r^(2)h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/titmu4ltmv02ffi5m2twbvsriijaisu55u.png)
we have
![r=2/2=1\ in](https://img.qammunity.org/2020/formulas/mathematics/college/auj113bt4ww6kn4d1r942bwlse36b6ovtf.png)
![h=21\ in](https://img.qammunity.org/2020/formulas/mathematics/college/27gmdop674oyif9yhfjhtemoznbyloaxh2.png)
substitute
![V=\pi (1^(2))(21)=21\pi\ in^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/eja54b2l7udwcusdeq0xyjjx1wd4lgkeqa.png)
Find the area of the figure
![V=\pi\ in^(3)+21\pi\ in^(3)=22\pi\ in^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/4f36gj393qi14cwp4kwkivowpfbcyc440b.png)
![V=22\pi=22*3.14=69.08\ in^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/pv1oj2clb5s8pac9c4yq99q8j2b1l4sc0e.png)