lemme use a slightly different equation, just the variables differ, but is basically the same you have there.
A)
![\bf \textit{Amount of Population Growth, \boxed{\textit{10th day}}} \\\\ A=Pe^(rt)\qquad \begin{cases} A=\textit{accumulated amount}\dotfill&5287\\ P=\textit{initial amount}\dotfill &P\\ r=rate\to r\%\to (r)/(100)\\ t=\textit{elapsed time}\dotfill &10\\ \end{cases} \\\\\\ A=5287e^(10r) \\\\[-0.35em] ~\dotfill](https://img.qammunity.org/2020/formulas/mathematics/college/bcbokrfnsw45zjz2nf80kbcj0kwym0fzty.png)
![\bf \textit{Amount of Population Growth, \boxed{\textit{21st day}}} \\\\ A=Pe^(rt)\qquad \begin{cases} A=\textit{accumulated amount}\dotfill&692\\ P=\textit{initial amount}\dotfill &P\\ r=rate\to r\%\to (r)/(100)\\ t=\textit{elapsed time}\dotfill &21\\ \end{cases} \\\\\\ 692=Pe^(21r) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} 5287=Pe^(10r)\\ 692=Pe^(21r) \end{cases}](https://img.qammunity.org/2020/formulas/mathematics/college/kc354f4dngq0j4m04dp20bjfebihmb1c4j.png)

![\bf ln\left( \cfrac{692}{5287}\right)=ln\left( e^(11r) \right)\implies ln\left( \cfrac{692}{5287}\right)=11r\implies \cfrac{ln\left( (692)/(5287)\right)}{11}=r \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill -0.18486\approx r~\hfill](https://img.qammunity.org/2020/formulas/mathematics/college/fom8apmsn12jmwdcy6jced8qqqz66u6wdd.png)
B)

and we can round that up to a whole leaf of 6361, or truncate it to 6360, chances are is the latter.
C)

and we can round that up to 47 days even.