Answer:
B is correct
The value of limit is 5
Explanation:
We are given a limit
![L=\lim_(x\rightarrow \infty)\left ( (5x)/(x-2)+(7x)/(x^2+2) \right )](https://img.qammunity.org/2020/formulas/mathematics/high-school/iyt56nwbc2iffpz388ogt2ijl59wbn1yuo.png)
Here we need to find value of limit using limit property.
First we distribute limit
![L=\left ( \lim_(x\rightarrow \infty)(5x)/(x-2)+\lim_(x\rightarrow \infty)(7x)/(x^2+2) \right )](https://img.qammunity.org/2020/formulas/mathematics/high-school/fk8w20hq42791cpinzjao8swfjic2rrbsa.png)
Divide each limit by x at numerator and denominator
![L=\left ( \lim_(x\rightarrow \infty)(5)/(1-2/x)+\lim_(x\rightarrow \infty)(7/x)/(1+2/x^2) \right )](https://img.qammunity.org/2020/formulas/mathematics/high-school/jxyoxvn8sy9slolcgw8murmagn5caxfiwb.png)
Apply limit
![L=\left ( (5)/(1-2/\infty)+(7/\infty)/(1+2/\infty) \right )](https://img.qammunity.org/2020/formulas/mathematics/high-school/tx2b6jth7uivtuuzwmhickzi7d9cw9i5lx.png)
![L= (5)/(1-0)+(0)/(1+0)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jb6wtkqxw4slf6hlucr6wxmi6014757ych.png)
![L=5+0](https://img.qammunity.org/2020/formulas/mathematics/high-school/xafy0dy83choja7pnu4x6ad6ni5jbtnoc1.png)
L=5
Hence, The value of limit is 5