Answer:
![a. 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ffzepo2xkm7upo8he5ijmb125qrvpsqoob.png)
Explanation:
The given limit is
![\lim_(x \to \infty) ((x)/(x^2+1)+(2x^2)/(x^3+x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/u4irs7u21tq8uzjcstntf4j7blgto3hzqa.png)
The limit of a sum is the sum of the limit
![\lim_(x \to \infty) (x)/(x^2+1)+lim_(x \to \infty) (2x^2)/(x^3+x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dkn35ayetkmzyo2tty3n0kbnywk459ceg4.png)
We divide the numerator and the denominator of each limit by the highest power of x in the denominator.
![\lim_(x \to \infty) ((x)/(x^2))/((x^2)/(x^2)+(1)/(x^2))+lim_(x \to \infty) ((2x^2)/(x^3))/((x^3)/(x^3)+(x)/(x^3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/ds7ovxq813d1fp1qgk96oxk0bp8iqxypna.png)
This gives us;
![\lim_(x \to \infty) ((1)/(x))/(1+(1)/(x^2))+lim_(x \to \infty) ((2)/(x))/(1+(1)/(x^2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/nt0dxlu2ssbradzd001v9105pv5b658a2b.png)
Apply the following property of limit;
As
, where c is a constant.
This will give us;
![\lim_(x \to \infty) ((1)/(x))/(1+(1)/(x^2))+lim_(x \to \infty) ((2)/(x))/(1+(1)/(x^2))=(0)/(1+0)+(0)/(1+0)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/mkudfz299n4xr6lygglh0cus3ighesrpue.png)