Answer: A. 61.5
Explanation:
According to the IQR (Interquartile range) rule , the upper fence for the dta values is given by :_
![\text{Third Quartile}+1.5* \text{IQR}](https://img.qammunity.org/2020/formulas/mathematics/high-school/292470qeluj12020yn3vx804v4hyct50j5.png)
Given : First Quartile :
![Q_1=39](https://img.qammunity.org/2020/formulas/mathematics/high-school/akqkzqqu8cwpog7otbfs1qmqfugkp2bjlb.png)
Third Quartile :
![Q_3=48](https://img.qammunity.org/2020/formulas/mathematics/high-school/zy29fycpxlwxeqrxijn9lv81aa7zqu61z6.png)
Interquartile range (IQR)=
![Q_3-Q_1=48-39=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/vutokuey3bhoqxg4pf79uh7n7clz1uv70r.png)
Then, Upper fence:
![48+1.5*(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/yisiamo2r2hxxegaqls7a6l49h4g7hda43.png)
![=48+13.5=61.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/edd8d71uo2trq2qvtzg4bzhfavpq81bz72.png)
Hence, the maximum age of a male who would not be considered an outlier = 61.5