Answer:
![\large\boxed{H=135\ cm}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/awgxmixtrzjwq5q5405nsm8cyk8xncsn37.png)
Explanation:
The formula of a volume of a cylinder:
![V=\pi r^2H](https://img.qammunity.org/2020/formulas/mathematics/middle-school/52a2k3guoaimaj540yalgb1u6z297crakz.png)
r - radius
H - height
We have the radius r = 12cm and the height H = 20cm. Substitute:
![V=\pi(12^2)(20)=\pi(144)(20)=2880\pi\ cm^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/utv34xqwcifv3ufgkrv14h4o0uih4kuu4d.png)
The formula of a volume of a cone:
![V=(1)/(3)\pi r^2H](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9vrmkhypul0xntptkm1j5397rcizvcfvwj.png)
r - radius
H - height
We have the radius r = 8cm and the volume V = 2880πcm³. Substitute:
![(1)/(3)\pi(8^2)H=2880\pi\qquad\text{divide both sides by}\ \pi\\\\(1)/(3)(64)H=2880\qquad\text{multiply both sides by 3}\\\\64H=8640\qquad\text{divide both sides by 64}\\\\H=135\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qyqfm68hv3s2kuaxmnfx46q6y75sdnueoj.png)