184k views
15 votes
If A=[1 0 -1 7] find K such that A^2-8A-ki-KI=0

1 Answer

10 votes

Answer:

K = -7

Explanation:

If A=[1 0 -1 7] find K such that A^2-8A-ki-KI=0

Given the 2×2 matrices

A =
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]

We are to find K if =0

A² =
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]

A² =
\left[\begin{array}{ccc}1&0\\-8&49\\\end{array}\right]

8A = 8
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]

8A =
\left[\begin{array}{ccc}8&0\\-8&56\\\end{array}\right]

Since
I = \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right] \\


KI = \left[\begin{array}{ccc}K&0\\0&K\\\end{array}\right]

Substitute the resulting matrices into the expression above:

A^2-8A-KI =
\left[\begin{array}{ccc}1&0\\-8&49\\\end{array}\right] -
\left[\begin{array}{ccc}8&0\\-8&56\\\end{array}\right] -
\left[\begin{array}{ccc}K&0\\0&K\\\end{array}\right] =
\left[\begin{array}{ccc}0&0\\0&0\\\end{array}\right]

From the expression, we have the equations;

1 - 8 - k = 0

-7 - k = 0

-7 = k

k = -7

Hence the value of K is -7

User Lewray
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories