184k views
15 votes
If A=[1 0 -1 7] find K such that A^2-8A-ki-KI=0

1 Answer

10 votes

Answer:

K = -7

Explanation:

If A=[1 0 -1 7] find K such that A^2-8A-ki-KI=0

Given the 2×2 matrices

A =
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]

We are to find K if =0

A² =
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]

A² =
\left[\begin{array}{ccc}1&0\\-8&49\\\end{array}\right]

8A = 8
\left[\begin{array}{ccc}1&0\\-1&7\\\end{array}\right]

8A =
\left[\begin{array}{ccc}8&0\\-8&56\\\end{array}\right]

Since
I = \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right] \\


KI = \left[\begin{array}{ccc}K&0\\0&K\\\end{array}\right]

Substitute the resulting matrices into the expression above:

A^2-8A-KI =
\left[\begin{array}{ccc}1&0\\-8&49\\\end{array}\right] -
\left[\begin{array}{ccc}8&0\\-8&56\\\end{array}\right] -
\left[\begin{array}{ccc}K&0\\0&K\\\end{array}\right] =
\left[\begin{array}{ccc}0&0\\0&0\\\end{array}\right]

From the expression, we have the equations;

1 - 8 - k = 0

-7 - k = 0

-7 = k

k = -7

Hence the value of K is -7

User Lewray
by
5.2k points