Answer:
The equation of the circle is
![(x-4)^(2)+(y)^(2) =100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/thjuceojguuie05nxkeekwdoenfdvmeebf.png)
Explanation:
we know that
The general equation of the circle into center-radius form is equal to
![(x-h)^(2)+(y-k)^(2) =r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4h1it2oyhv5fshbr4j7yr6eqytutdkslfr.png)
where
(h,k) is the center of the circle
In this problem
![(h,k)=(4,0)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4tezmi0c0lvow2gbgax37bo42z7m9u3c9u.png)
substitute
![(x-4)^(2)+(y-0)^(2) =r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rou7ueccqyn00dvw912w8enu1c7lhb6jsh.png)
![(x-4)^(2)+(y)^(2) =r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xpddq5wp3x5r36nsbzmtlz7bmty7w624hw.png)
Find the radius
we know that
The distance between the points (-2,8) and (4,0) is equal to the radius
Applying the distance 's formula
![d=\sqrt{(0-8)^(2)+(4+2)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bng6z481k12nsdb7cflu7r53ryw8od4oki.png)
![d=\sqrt{100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/djtyl623yexyg7905nmkqjz3ollbe1e848.png)
![d=10\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/20p2zk4mcpzlt84kh18m8ndqg1wam8pxb7.png)
so
the radius is equal to
![r=10\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8opgydp9k6fw9tyijehcb6jxkhsr1on5k3.png)
substitute
![(x-4)^(2)+(y)^(2) =10^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1otrnvg5ui3qq0e0qsysrusbz1lb00smis.png)
![(x-4)^(2)+(y)^(2) =100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/thjuceojguuie05nxkeekwdoenfdvmeebf.png)