Answer:
The factors are
![7,(x-2),(x+4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8shefq8kows72o39ucox0fglbg5oepkgci.png)
![7x^(2) +14x-56=7(x-2)(x+4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tzvywhlfhj75hjgb844cwmtkvhlbjto6qb.png)
Explanation:
we have
![7x^(2) +14x-56](https://img.qammunity.org/2020/formulas/mathematics/high-school/cmwqwfxkorx0wx2w62ciqtxxp9a8pab2e7.png)
equate the expression to zero
![7x^(2) +14x-56=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/mbqrqenzp2xr0f19zz7tmamymuxy1468ha.png)
Group terms that contain the same variable, and move the constant to the opposite side of the equation
![7x^(2) +14x=56](https://img.qammunity.org/2020/formulas/mathematics/high-school/p8c1bwq57r61vyyvp3zqfnyimlisejxqsj.png)
Factor the leading coefficient
![7(x^(2) +2x)=56](https://img.qammunity.org/2020/formulas/mathematics/high-school/x73aed5e0dnbi493t9a08kz4qpl7fvdigk.png)
![(x^(2) +2x)=8](https://img.qammunity.org/2020/formulas/mathematics/high-school/fnl68jfispvm4arjmdqz5vxtrcgz8qnm49.png)
Complete the square. Remember to balance the equation by adding the same constants to each side
![(x^(2) +2x+1)=8+1](https://img.qammunity.org/2020/formulas/mathematics/high-school/phpjrsfo0jy45buai03pjcmhjffuzmuxrv.png)
![(x^(2) +2x+1)=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/s8mwe2x1yt1zm3yimwbxj86mkfppmd6jlr.png)
Rewrite as perfect squares
![(x+1)^(2)=9](https://img.qammunity.org/2020/formulas/mathematics/high-school/mu3q68itbupe3em60hicu3l2tsjuv51xny.png)
Take square root both sides
![(x+1)=(+/-)3](https://img.qammunity.org/2020/formulas/mathematics/high-school/iz8glapz1o07pop96y6ds44msddzxvvwg6.png)
![x=-1(+/-)3](https://img.qammunity.org/2020/formulas/mathematics/high-school/f6dgkcm3lpf45sq9m8v44vspoy47qo8t4p.png)
![x=-1(+)3=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/ki3pndje9hc28nuazd6w10ah5xvmrsjo9j.png)
![x=-1(-)3=-4](https://img.qammunity.org/2020/formulas/mathematics/high-school/7ni558fdg93uehkaa1579nlmacr36prlml.png)
therefore
![7x^(2) +14x-56=7(x-2)(x+4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tzvywhlfhj75hjgb844cwmtkvhlbjto6qb.png)