Answer:
option (d) and (f) is correct.
The solution of given quadratic equation is 3 and -9.
Explanation:
Given quadratic equation
![x^2+6x=27](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4ymgwyyzqkqd5wo2qqt8o5lmxun9kzwx3x.png)
We have to solve the given quadratic equation using quadratic formula.
Consider
, we can rewrite it as
![x^2+6x-27=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l0p1prbkef90vsmh1zw0xgtstzr1ysfxpj.png)
For the general quadratic equation
the quadratic formula is given as
![x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r34q3le2s15fxhwwltlsvcejgf202jyytu.png)
Here a = 1 , b= 6 and c = -27
Substitute, we get,
![x_(1,\:2)=(-6\pm √(6^2-4\cdot \:1\left(-27\right)))/(2\cdot \:1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2rdjwqxo895pax5pk2eaigm7sp4k462yw5.png)
Solving further , we get,
![x_(1,2)=(-6\pm√(6^2+4\cdot \:1\cdot \:27))/(2\cdot \:1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lfnbri9egych894rhom9pao6trtjrg4n5x.png)
![x_(1,2)=(-6\pm√(144))/(2\cdot \:1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pb1p9mo7mdpov2qfxlqsuzqt7ead6lyzzo.png)
We know
, we get,
![x_(1,2)=(-6\pm 12)/(2\cdot \:1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tkewgfx4g33qxmby4p15jzl2kb6ptcddh8.png)
and
![x_(2)=(-6-12)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2hszizokalp4rxwpjmiufg2t2nvi120457.png)
Solving we get,
and
![x_(2)=(-18)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fw3i5uew0xs4r0wu7fpqr9kegjeplcchc8.png)
and
![x_(2)=-9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pw7bd66336sekwh4dzrrjgsb5hwwyez2ud.png)
Thus, the solution of given quadratic equation is 3 and -9.
Thus, option (d) and (f) is correct.