177k views
2 votes
Find all solutions to the equation secx(2cosx-sqrt2)=0

Find all solutions to the equation secx(2cosx-sqrt2)=0-example-1

1 Answer

3 votes

Answer:

Option A.


x = (\pi)/(4) +2k\pi and
x = 7(\pi)/(4) +2k\pi

Explanation:

We have the following expression:


secx(2cosx -√(2)) = 0

For this equation to fulfill any of the two terms, or both, they must be zero:

That is to say:


secx = 0 or
(2cosx -√(2)) = 0

We know that
secx = (1)/(cosx) is different from 0 for all x.

Then we only have one option left.


(2cosx -√(2)) = 0

We clear x from the equation:


2cosx = √(2)


cosx = (√(2))/(2)


x = acos((√(2))/(2))


x = (\pi)/(4) +2k\pi and
x = 7(\pi)/(4) +2k\pi

where k is an integer

User Vinalti
by
6.2k points