Answer:
Part A) The ratio is
![(72x^(5))/(9x^(7))](https://img.qammunity.org/2020/formulas/mathematics/college/v6isavs871umnx8d1s8z90n8l52jfwudc8.png)
Part B)
![(8)/(x^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/rrlox856xdc4rbavzq4mx9x2xwkx2f0k3i.png)
Part C)
----> The answer change
Explanation:
Let
a------> Michael's weight
b----> Al's weight
we have
![a=72x^(5)](https://img.qammunity.org/2020/formulas/mathematics/college/r7npa7p9x4top06p768hxbetpxqle8874x.png)
![b=9x^(7)](https://img.qammunity.org/2020/formulas/mathematics/college/pa92ytkvq9lex6e1ma25i7c4eo0zh3b7ig.png)
Part A) What is the ratio of Michael's weight to Al's weight
we know that
![ratio=(a)/(b)](https://img.qammunity.org/2020/formulas/mathematics/college/64g5n8u93b9p3l30q9dy3atwq7rk323apw.png)
substitute the values
![ratio=(72x^(5))/(9x^(7))](https://img.qammunity.org/2020/formulas/mathematics/college/3qt5iak2qsn55z9mdt3el6r4wp7ewc8d5n.png)
Part B) Simplify the ratio from part A)
we have
![ratio=(72x^(5))/(9x^(7))](https://img.qammunity.org/2020/formulas/mathematics/college/3qt5iak2qsn55z9mdt3el6r4wp7ewc8d5n.png)
we know that
![(72)/(9)=8](https://img.qammunity.org/2020/formulas/mathematics/college/wgf12d6kptxhfgtpnpw1xj9d0jbmk1rcg7.png)
![(x^(5))/(x^(7))=(1)/(x^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/l65urfwz29h27l08qdbii6fr8lr1cl37hw.png)
substitute
![ratio=(72x^(5))/(9x^(7))=(8)/(x^(2))](https://img.qammunity.org/2020/formulas/mathematics/college/vsj91xqrn8zts5j6mros0gnnviqe8hg5wt.png)
Part C) If the exponents in each expression were negative, instead of positive, would that change your answer for part b?
If the exponents in each expression were negative
then
the expression will be
![ratio=(72x^(-5))/(9x^(-7))](https://img.qammunity.org/2020/formulas/mathematics/college/qp56obm5m8xr6egi9mu5j3g6f2a7akg0na.png)
we know that
![(72)/(9)=8](https://img.qammunity.org/2020/formulas/mathematics/college/wgf12d6kptxhfgtpnpw1xj9d0jbmk1rcg7.png)
![(x^(-5))/(x^(-7))=(x^(7))/(x^(5))=x^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/kwxr0zto4danare8l5lwqm7eo596i8foap.png)
substitute
![ratio=(72x^(-5))/(9x^(-7))=8x^(2)](https://img.qammunity.org/2020/formulas/mathematics/college/xi952x3xglg07jyikwhzyiqjwitx45w435.png)
therefore
The answer change