58.0k views
3 votes
Given: △ABC, BK=10, AC=30, m∠NMO=90°, MN=MO, BK⊥AC, NO∥AC, M∈AC Find: NO

Given: △ABC, BK=10, AC=30, m∠NMO=90°, MN=MO, BK⊥AC, NO∥AC, M∈AC Find: NO-example-1
User Guymid
by
8.1k points

1 Answer

5 votes

Answer: 12 unit.

Explanation:

Given : In triangle ABC,

m∠NMO=90°, MN=MO, BK⊥AC, NO∥AC, M∈AC, BK=10, AC=30,

We have to find : NO

Since, NO∥AC,

By the alternative interior angle theorem,


\angle BNO\cong \angle BAC


\angle BON\cong \angle BCA

Also,


\angle NBO\cong \angle ABC

Thus, by AAA similarity postulate,


\triangle NBO\cong \triangle ABC

Let S ∈ NO such that BS ⊥ NO,

By the property of similar triangles,


(BS)/(BK)=(NO)/(AC)


\implies (BK-SK)/(BK)=(NO)/(AC) -------- (1),

Now, m∠NMO=90° and MN=MO,

Let J ∈ NO, such that MJ⊥NO

⇒ Triangle NMO is a isosceles triangle,

⇒ ∠MNJ = 45°,


\implies tan 45^(\circ) = (MJ)/(NJ)


\implies MJ = NJ = SK


\implies NO = 2 SK -------(2)

From equation (1),


\implies (BK-SK)/(BK)=(2 SK)/(AC)

Since, BK=10, AC=30


\implies (10-SK)/(10)=(2 SK)/(30)


\implies 300 - 30 SK = 20 SK \implies 50 SK = 300\implies SK = 6

From equation (2),

NO = 2 × 6 = 12 unit.

Given: △ABC, BK=10, AC=30, m∠NMO=90°, MN=MO, BK⊥AC, NO∥AC, M∈AC Find: NO-example-1
User Ebriggs
by
7.5k points