Answer: The correct option is (B) (-2, 13).
Step-by-step explanation: We are given to find the solution of the following system of equations :
![12q+3r=15~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\-4q-4r=-44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kdjtfskg3wub1x8432fh9i71wd0m9g6p1x.png)
Multiplying equation (ii) by 3, we have
![3(-4q-4r)=-44*3\\\\\Rightarrow -12q-12r=-132~~~~~~~~~~~~~~~~~~~~~~~~(iii)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3582gec0akhasuyhq5izqli2q56qkp3926.png)
Adding equations (i) and (iii), we get
![(12q+3r)+(-12q-12r)=15+(-132)\\\\\Rightarrow 3r-12r=15-132\\\\\Rightarrow -9r=-117\\\\\Rightarrow r=(-117)/(-9)\\\\\Rightarrow r=13.](https://img.qammunity.org/2020/formulas/mathematics/high-school/mo2jrtvb719zm13uwgb1bnb2ldpgb2ahtr.png)
From equation (ii), we get
![-4q-4*13=-44\\\\\Rightarrow -4q-52=-44\\\\\Rightarrow -4q=-44+52\\\\\Rightarrow -4q=8\\\\\Rightarrow q=(8)/(-4)\\\\\Rightarrow q=-2.](https://img.qammunity.org/2020/formulas/mathematics/high-school/19kl2ls96ou0bmkeegjy5k2hrm8h3wel6w.png)
Thus, the required solution is (q, r) = (-2, 13).
Option (B) is CORRECT.