23.9k views
2 votes
Solve 3sqrt(x) = 8/(sqrt(9x - 32)) + sqrt(9x - 32)​

2 Answers

10 votes


\huge \color{gray}{ \tt{answer}}


x = 4

Explanation:


3 √(x) = (8)/((9x - 32)) + √((9x - 32))

  • move the expression to the left


3 √(x) - (8)/( √(9x - 32) ) - √(9x - 32) = 0

  • transform the expression


(3 √((9x - 32 x)) - 8 - √(9x - 32) )/( √(9x - 32) )

  • set the numerator


3 √((9x - 32)x) - 8 - (9x - 32) = 0

  • remove the parentheses


3 \sqrt{9 {x}^(2) - 32x} + 24 - 9x = 0

  • move the expression to the right


3 \sqrt{9 {x}^(2) - 32x } - 24 + 9x

  • divide both sides


\sqrt{9 {x}^(2) - 32x } = - 8 + 3x

  • simplify the expression


9 {x}^(2) - 32x = 9 {x}^(2) - 48x + 64

  • cancel equal terms


- 32x = - 48x + 64

  • move the variable to the left


- 32x = + 48x = 64

  • collect like terms


16x = 64

  • divide both sides


= \: \: x = 4

  • check the solution


3 √(4) = (8)/( √(9 * 4 - 32) ) + √(9 * 4 - 32)

  • simplify


6 = 6

  • so the solution is


≈ \: \: x = 4


\huge \color {cyan}{ \tt{hope \: \: it \: \: helps}}

User Gijs Wobben
by
4.3k points
13 votes

Answer:

Explanation:


3√(x)=(8)/(√(9x-32))+√(9x -32)\\\\\\3√(x)=(8*√(9x-32))/((√(9x-32))*(√(9x-32)))+√(9x-32)\\\\3√(x)=(8*√(9x-32))/(9x-32)+√(9x-32)\\\\\\3√(x)=(√(9x-32))((8)/(9x-32)+1)\\\\(3√(x))/(√(9x-32))=(8+9x-32)/(9x-32)\\\\(3√(x))/(√(9x-32))=(9x - 24)/(9x-32)\\\\Take \ square\\\\((3√(x))/(√(9x-32)))^(2)=((9x-24)/(9x-32))^(2)\\\\(9x)/(9x-32)=((9x-24)^(2))/((9x-32)^(2))\\\\

9x*(9x - 32) = (9x- 24)²

9x*9x - 9x*32 = 81x² - 2*9x*24 + 576

81x² - 288x = 81x² - 432x + 576

81x² - 288x - 81x² + 432x - 576 = 0

81x² - 81x² - 288x + 432x - 576 = 0

144x - 576 = 0

144x = 576

x = 576/144

x =4

User Mollerhoj
by
4.3k points