116k views
0 votes
Given the parent function f(x) = x^2 describe the translation of the function y=(.2x)^2?

Given the parent function f(x) = x^2 describe the translation of the function y=(.2x-example-1

1 Answer

4 votes

Answer:

Option C.

Explanation:

Let
f(x) = x ^ 2 be a quadratic function

Then we do the function
y = f(bx) = (bx) ^ 2

Where b is a real number.

If
b> 1 then the function
y = (bx) ^ 2 represents a horizontal compression of the function
y = x ^ 2

If
0 <b <1 Then the function
y = (bx) ^ 2 represents a horizontal expansion compression of the function
y = x ^ 2 by a factor of
(1)/(b)

In this case, the equation is:


y = (0.2x) ^ 2 Then:


b = 0.2


0 <b <1

Thus


y = (0.2x) ^ 2 is a horizontal expansion of the function
y = x ^ 2 by a factor of
(1)/(0.2) = 5.

The correct option is: Option C

User Niboshi
by
5.6k points