85.4k views
4 votes
I need help with this problem if someone could be of assistance

I need help with this problem if someone could be of assistance-example-1

1 Answer

2 votes

Answer:

1) cos 105°

2) tan 67.5°

3) sin 67.5°

4) tan 165°

Explanation:

From half angle identity


sin(\theta )/(2)= \sqrt{(1-cos\theta )/(2)}

For sin 67.5 = sin (135/2)

Here 67.5° lies in Ist quadrant therefore


sin(\theta )/(2)= \sqrt{(1-cos\theta )/(2)}


=\sqrt{((1-cos135))/(2)}=\sqrt{(1+cos45)/(2)}


=\sqrt{(1+(1)/(√(2)))/(2)}=\sqrt{(√(2)+1)/(2√(2))}


=\sqrt{((√(2)+1)(√(2)))/(2√(2)* √(2))}


=\sqrt{(√(2)+2)/(2)}=\frac{\sqrt{√(2)+2}}{2}

For cos 105 = cos (210/2)

From half angle identity


cos(\theta/2) =\pm \sqrt{(1+cos\theta )/(2)}

Since cos 105 lies in second quadrant

Therefore
cos(\theta/2) =-\sqrt{(1+cos\theta )/(2)}


cos(\210/2) =-\sqrt{(1+cos210)/(2)}


=-\sqrt{(1-cos60)/(2)}=-\sqrt{(1-(√(3))/(2))/(2)}


=-\sqrt{(2-√(3))/(4)}=-\frac{\sqrt{2-√(3)}}{2}

For tan165 = tan (330/2)

From half angle identity


tan(\theta/2) =(sin\theta )/(1+cos\theta )


=(sin330)/(1+cos330)=-(sin30)/(1+cos30)


=-((1)/(2))/(1+(√(3))/(2))=-(1)/(2+√(3))


=-(2-√(3))/((2+√(3))(2-√(3)))=-(2-√(3))/(4-3)=-(2-√(3))=√(3)-2

For tan 67.5 = tan (135/2)

From half angle identity


tan(\theta/2) =(sin\theta )/(1+cos\theta )


=(sin135)/(1+cos135)=(sin45)/(1+cos45)


=((1)/(√(2)))/(1-(1)/(√(2)))


=(1)/(√(2)-1)=(1)/(√(2)-1)* (√(2)+1)/(√(2)+1)


=(√(2)+1)/(2-1)=√(2)+1

User Amurrell
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories