Answer:
1) cos 105°
2) tan 67.5°
3) sin 67.5°
4) tan 165°
Explanation:
From half angle identity
![sin(\theta )/(2)= \sqrt{(1-cos\theta )/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4a0po64idx0ia4t172lkeul5msnng6by4b.png)
For sin 67.5 = sin (135/2)
Here 67.5° lies in Ist quadrant therefore
![sin(\theta )/(2)= \sqrt{(1-cos\theta )/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4a0po64idx0ia4t172lkeul5msnng6by4b.png)
![=\sqrt{((1-cos135))/(2)}=\sqrt{(1+cos45)/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/652uhzhp6zkkcnabulobft8arfqa9v6iwk.png)
![=\sqrt{(1+(1)/(√(2)))/(2)}=\sqrt{(√(2)+1)/(2√(2))}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mfbyzl9e8x80ngrp7ic8ahnn81pqwezudt.png)
![=\sqrt{((√(2)+1)(√(2)))/(2√(2)* √(2))}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bp3gek2mgd8glvsyvt55g2wzkiq59r3boz.png)
![=\sqrt{(√(2)+2)/(2)}=\frac{\sqrt{√(2)+2}}{2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4nfkfuvh6lcdtkpr17syiuwrf0ak438pw8.png)
For cos 105 = cos (210/2)
From half angle identity
![cos(\theta/2) =\pm \sqrt{(1+cos\theta )/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7it59sg8oz703dl8hrplnwohf4b7z6fsxk.png)
Since cos 105 lies in second quadrant
Therefore
![cos(\theta/2) =-\sqrt{(1+cos\theta )/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qh0axs23cslauehvdos1zmnobjps5nytr0.png)
![cos(\210/2) =-\sqrt{(1+cos210)/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mr0zfecrfd3p2mcv8zmmm672eeorshk81p.png)
![=-\sqrt{(1-cos60)/(2)}=-\sqrt{(1-(√(3))/(2))/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xkqduq3tvkkilethslrwjdn26p0pxhxe9i.png)
![=-\sqrt{(2-√(3))/(4)}=-\frac{\sqrt{2-√(3)}}{2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dv35j196mw7tcxfs6ro7ezvoaonkxwbum9.png)
For tan165 = tan (330/2)
From half angle identity
![tan(\theta/2) =(sin\theta )/(1+cos\theta )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q0bmf03a75lhckm5ez4skj2mogj25rcd0c.png)
![=(sin330)/(1+cos330)=-(sin30)/(1+cos30)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bl2aw5uob66inx57ma0sxqye6ehn6qlhv7.png)
![=-((1)/(2))/(1+(√(3))/(2))=-(1)/(2+√(3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1bcvf94kc9glu2cmalgal67czyc80ovup4.png)
![=-(2-√(3))/((2+√(3))(2-√(3)))=-(2-√(3))/(4-3)=-(2-√(3))=√(3)-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t3ayma8ky25r23dogior1y4by9briblxz7.png)
For tan 67.5 = tan (135/2)
From half angle identity
![tan(\theta/2) =(sin\theta )/(1+cos\theta )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q0bmf03a75lhckm5ez4skj2mogj25rcd0c.png)
![=(sin135)/(1+cos135)=(sin45)/(1+cos45)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4b6y7kf2v0y7w4bz3h4gze1o8z5esc9f3f.png)
![=((1)/(√(2)))/(1-(1)/(√(2)))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xd06hdt1gax2iqth27xzqp31kyqia4reu1.png)
![=(1)/(√(2)-1)=(1)/(√(2)-1)* (√(2)+1)/(√(2)+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pe59i210ktjm9anwe4348hydwskjlj9ezv.png)
![=(√(2)+1)/(2-1)=√(2)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r0x1w3ksxqgtjwwpz58hg9wsw9wxe77kix.png)