85.4k views
4 votes
I need help with this problem if someone could be of assistance

I need help with this problem if someone could be of assistance-example-1

1 Answer

2 votes

Answer:

1) cos 105°

2) tan 67.5°

3) sin 67.5°

4) tan 165°

Explanation:

From half angle identity


sin(\theta )/(2)= \sqrt{(1-cos\theta )/(2)}

For sin 67.5 = sin (135/2)

Here 67.5° lies in Ist quadrant therefore


sin(\theta )/(2)= \sqrt{(1-cos\theta )/(2)}


=\sqrt{((1-cos135))/(2)}=\sqrt{(1+cos45)/(2)}


=\sqrt{(1+(1)/(√(2)))/(2)}=\sqrt{(√(2)+1)/(2√(2))}


=\sqrt{((√(2)+1)(√(2)))/(2√(2)* √(2))}


=\sqrt{(√(2)+2)/(2)}=\frac{\sqrt{√(2)+2}}{2}

For cos 105 = cos (210/2)

From half angle identity


cos(\theta/2) =\pm \sqrt{(1+cos\theta )/(2)}

Since cos 105 lies in second quadrant

Therefore
cos(\theta/2) =-\sqrt{(1+cos\theta )/(2)}


cos(\210/2) =-\sqrt{(1+cos210)/(2)}


=-\sqrt{(1-cos60)/(2)}=-\sqrt{(1-(√(3))/(2))/(2)}


=-\sqrt{(2-√(3))/(4)}=-\frac{\sqrt{2-√(3)}}{2}

For tan165 = tan (330/2)

From half angle identity


tan(\theta/2) =(sin\theta )/(1+cos\theta )


=(sin330)/(1+cos330)=-(sin30)/(1+cos30)


=-((1)/(2))/(1+(√(3))/(2))=-(1)/(2+√(3))


=-(2-√(3))/((2+√(3))(2-√(3)))=-(2-√(3))/(4-3)=-(2-√(3))=√(3)-2

For tan 67.5 = tan (135/2)

From half angle identity


tan(\theta/2) =(sin\theta )/(1+cos\theta )


=(sin135)/(1+cos135)=(sin45)/(1+cos45)


=((1)/(√(2)))/(1-(1)/(√(2)))


=(1)/(√(2)-1)=(1)/(√(2)-1)* (√(2)+1)/(√(2)+1)


=(√(2)+1)/(2-1)=√(2)+1

User Amurrell
by
5.2k points