By definition of the derivative,
![y'=\displaystyle\lim_(h\to0)\frac{(x+h)e^(x+h)-xe^x}h](https://img.qammunity.org/2020/formulas/mathematics/college/kmbugm761ofhzl0npx31smc2ox0d3gchv3.png)
We can employ the standard manipulation for proving the product rule:
![\displaystyle\lim_(h\to0)\frac{(x+h)e^(x+h)-xe^(x+h)+xe^(x+h)-xe^x}h](https://img.qammunity.org/2020/formulas/mathematics/college/xaschfu7iuyo52qhd8y3iqpjfc08cij53v.png)
![\displaystyle\lim_(h\to0)\frac{(x+h)e^(x+h)-xe^(x+h)}h+xe^x\lim_(h\to0)\frac{e^h-1}h](https://img.qammunity.org/2020/formulas/mathematics/college/kuwtjb9v5xdxyr8vcsowei7ux5b6skp93m.png)
![\displaystyle\lim_(h\to0)e^(x+h)\lim_(h\to0)\frac{(x+h)-x}h+xe^x\lim_(h\to0)\frac{e^h-1}h](https://img.qammunity.org/2020/formulas/mathematics/college/sgn2u43u9siibbc208tf9skbb43ovsaa01.png)
![e^(x+0)\displaystyle\lim_(h\to0)\frac hh+xe^x\lim_(h\to0)\frac{e^h-1}h](https://img.qammunity.org/2020/formulas/mathematics/college/732cri51iwgl7cftlqre2fm2r3js5m1lv2.png)
![e^x+xe^x\displaystyle\lim_(h\to0)\frac{e^h-1}h](https://img.qammunity.org/2020/formulas/mathematics/college/xphnm58jaku92cvsd5jrqpgpn7ajiwwj7i.png)
The remaining limit is pretty well-known and has a value of 1. We can derive it from the definition of
,
![e=\displaystyle\lim_(n\to0)(1+n)^(1/n)](https://img.qammunity.org/2020/formulas/mathematics/college/3w3noq7zhhr2l51n509tjtlk5yuo98c00m.png)
In the limit above, we substitute
, so that
. As
, we have
:
![\displaystyle\lim_(h\to0)\frac{e^h-1}h=\lim_(\eta\to0)\frac\eta{\ln(\eta+1)}](https://img.qammunity.org/2020/formulas/mathematics/college/rl60iabq5nfo29cyyxqnx087byjoaohhr3.png)
![\displaystyle=\lim_(\eta\to0)\frac1{\frac1\eta\ln(\eta+1)}](https://img.qammunity.org/2020/formulas/mathematics/college/2hdxyhwncuoss3kx9e0cwzwd9nf7nh2j1y.png)
![\displaystyle=\frac1{\lim\limits_(\eta\to0)\ln(\eta+1)^(1/\eta)}](https://img.qammunity.org/2020/formulas/mathematics/college/qiq0xltjbjr7oftnfnk8v51rf1gel86s3r.png)
![\displaystyle=\frac1{\ln\left(\lim\limits_(\eta\to0)(\eta+1)^(1/\eta)\right)}](https://img.qammunity.org/2020/formulas/mathematics/college/6xiecewrr39ukf0y5ka310gakm193c62zd.png)
![=\frac1{\ln e}=\frac11=1](https://img.qammunity.org/2020/formulas/mathematics/college/zcat0yy4wj4z2rlndge6hb0zdoub5d4kv5.png)
After all this, we've shown that
![(xe^x)'=e^x+xe^x=e^x(x+1)](https://img.qammunity.org/2020/formulas/mathematics/college/zx2p06treu9398cy80aiitegylfdkeouto.png)