89.5k views
4 votes
Use first principle to find y'all for y=xe^x

User Foobnix
by
7.6k points

1 Answer

0 votes

By definition of the derivative,


y'=\displaystyle\lim_(h\to0)\frac{(x+h)e^(x+h)-xe^x}h

We can employ the standard manipulation for proving the product rule:


\displaystyle\lim_(h\to0)\frac{(x+h)e^(x+h)-xe^(x+h)+xe^(x+h)-xe^x}h


\displaystyle\lim_(h\to0)\frac{(x+h)e^(x+h)-xe^(x+h)}h+xe^x\lim_(h\to0)\frac{e^h-1}h


\displaystyle\lim_(h\to0)e^(x+h)\lim_(h\to0)\frac{(x+h)-x}h+xe^x\lim_(h\to0)\frac{e^h-1}h


e^(x+0)\displaystyle\lim_(h\to0)\frac hh+xe^x\lim_(h\to0)\frac{e^h-1}h


e^x+xe^x\displaystyle\lim_(h\to0)\frac{e^h-1}h

The remaining limit is pretty well-known and has a value of 1. We can derive it from the definition of
e,


e=\displaystyle\lim_(n\to0)(1+n)^(1/n)

In the limit above, we substitute
\eta=e^h-1, so that
h=\ln(\eta+1). As
h\to0, we have
\eta\to e^0-1=0:


\displaystyle\lim_(h\to0)\frac{e^h-1}h=\lim_(\eta\to0)\frac\eta{\ln(\eta+1)}


\displaystyle=\lim_(\eta\to0)\frac1{\frac1\eta\ln(\eta+1)}


\displaystyle=\frac1{\lim\limits_(\eta\to0)\ln(\eta+1)^(1/\eta)}


\displaystyle=\frac1{\ln\left(\lim\limits_(\eta\to0)(\eta+1)^(1/\eta)\right)}


=\frac1{\ln e}=\frac11=1

After all this, we've shown that


(xe^x)'=e^x+xe^x=e^x(x+1)

User Peshkira
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories