FIRST METHOD
Answer:
Explanation:
Given the table
x y
7 16
9 17
Missing x 18
13 Missing y
From the table, it is clear that y-values are incremented by 1 unit and the x-values are incremented by 2 units.
i.e.
y = 17-16 = 1
y = 18-17 = 1
as 19-18 = 1
Thus,
Thus, the value of Missing y = 19
also the x-values increment by 2.
i.e.
x = 9-7 = 2
as x = 11 - 9 = 2
Thus, Missing x = 11
Therefore,
2ND METHOD
Given that the table represents a linear function, so the function is a straight line.
Taking two points
Finding the slope between (7, 16) and (9, 17)
![\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/noa3dwrz4s6a4umc1ibrxg0crgl23zrf2o.png)
![\left(x_1,\:y_1\right)=\left(7,\:16\right),\:\left(x_2,\:y_2\right)=\left(9,\:17\right)](https://img.qammunity.org/2022/formulas/mathematics/college/f78xlwhf5yb57b63ndfvxddkz3a5wg3pli.png)
![m=(17-16)/(9-7)](https://img.qammunity.org/2022/formulas/mathematics/college/nzxpiwbvvsc1mx2vkvtxcvn97cbc7jx2wj.png)
![m=(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/i2u6xkj6zp1l8m9jh09ctmqi3p1kxmgl4z.png)
Using the point-slope form to determine the linear equation
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
where m is the slope of the line and (x₁, y₁) is the point
substituting the values m = 1/2 and the point (7, 16)
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
![y-16=(1)/(2)\left(x-7\right)](https://img.qammunity.org/2022/formulas/mathematics/college/qy7acghvpfyk0tm1vw53rb8oly2y9ce102.png)
Add 16 to both sides
![y-16+16=(1)/(2)\left(x-7\right)+16](https://img.qammunity.org/2022/formulas/mathematics/college/14rierylb8lsu5nwcw17k8w3sd3i9j973y.png)
![y=(1)/(2)x+(25)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/et90y5bi8nh8jc8o43fpw6zt8qu8gbatbc.png)
Thus, the equation of the linear equation is:
![y=(1)/(2)x+(25)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/et90y5bi8nh8jc8o43fpw6zt8qu8gbatbc.png)
Now substituting y = 18 in the equation
![18=(1)/(2)x+(25)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/41wij0lncogy8ir5eojlqkpcug2tgow8hy.png)
Switch sides
![(1)/(2)x+(25)/(2)=18](https://img.qammunity.org/2022/formulas/mathematics/college/dezac5f0wlurlivkyuc46bfgbbbak0yl9c.png)
subtract 25/2 from both sides
![(1)/(2)x+(25)/(2)-(25)/(2)=18-(25)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/3u2p1m7jhhkpwdvwpenj6e9knqp9qzmfs9.png)
![(1)/(2)x=(11)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/sul5omog3k56wrz5tmpfi11syzen6zzv5x.png)
![x=11](https://img.qammunity.org/2022/formulas/mathematics/college/h2ydj4fff0ajczk8hezsjwqsoc7hkbwbpf.png)
Thus, the value of missing x = 11 when y = 18
Now substituting x = 13 in the equation
![y=(1)/(2)\left(13\right)+(25)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/n2ocr2zgymxs9tm3orv3fdm7npi4f925nm.png)
![y=(13)/(2)+(25)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/9r7k8qflzdj14xph5wcyln8irvcx4xtpvf.png)
![y=(13+25)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/mqugw8ppm8kfc8yil56h33afqn6bbpq3ym.png)
![y=(38)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/sb7ebtzujp1wjn824s6n3i3hdocnixwtbc.png)
![y = 19](https://img.qammunity.org/2022/formulas/mathematics/college/pe4sjb9va8km77l1ys647jk9bbdw4cxvnj.png)
Thus, the value of missing y = 19 when x = 13
Hence, we conclude that:
- The value of missing x = 11
- The value of missing y = 19
Hence, option D is true.